[pageLogInLogOut]

#Research & Development

High-performance elastomers and plasma polymer coatings to replace fluoropolymers in technical applications: new Fraunhofer project

Users of poly- and perfluorinated alkyl compounds (PFAS), also known as "forever chemicals", are under pressure due to regulatory proposals from the European Chemicals Agency (ECHA). This also affects the use of fluoroelastomers, whose economic significance is enormous. Fraunhofer experts initiated the "HATE-Fluor" project at the beginning of February. Together, they want to develop high-performance elastomer compounds to replace fluoropolymers in certain technical applications.
Kick-off: The Fraunhofer project team and the industry advisory board of
Kick-off: The Fraunhofer project team and the industry advisory board of "HATE-Fluor" at the first meeting on Tuesday, April 8, 2025 © Fraunhofer IFAM


Various industries can benefit from this, including manufacturers of semi-finished and finished parts as well as companies in mechanical engineering industry, medical engineering, clean room and semiconductor technology, chemical process technology and electrical applications.

Many companies are looking for alternatives to poly- and perfluorinated alkyl compounds (PFAS), as their possible uses in the future are uncertain and voluntary commitments are expected. PFAS are found in everyday products such as coated pans, pizza boxes and outdoor jackets, as well as in medical engineering, heat pumps and batteries. While there are already fluorine-free substitutes for some everyday applications, there is a great need for new individual solutions to replace fluoropolymers for technical applications that have to withstand extreme conditions

PFAS replacement: coated elastomers and customizable modular solutions

In the newly initiated "HATE-Fluor" project, teams of experts at the Fraunhofer Institute for Structural Durability and System Reliability LBF and the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM will develop fluorine-free coated elastomers and offer customizable modular solutions to meet the growing market demand. The solution comprises three main steps: improving the thermal stability of fluorine-free elastomers with novel antioxidants, producing customized elastomer formulations and developing a coating system to protect the elastomer from oxidative and chemical attack.

The modular structure of this system, consisting of paint and plasma coatings, is intended to cover a broad spectrum in the section of fluorine alternative seals. The target properties are determined by the areas of application of the fluoroelastomers that are being replaced in the project.

Bundled Fraunhofer expertise

In the "HATE-Fluor" project, the Fraunhofer Institute for Structural Durability and System Reliability LBF is concentrating on the development of high-performance elastomers as a replacement for fluoropolymers in technical applications. One focus is on improving the thermal and thermo-oxidative stability of fluorine-free elastomers using innovative antioxidants. In addition, application-optimized elastomer formulations are being developed to ensure maximum resistance and optimum adhesion. This is complemented by the formulation of a coating system for the elastomers. The latter is being developed at the Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM to protect the material from oxidative attack and chemical degradation.

Fraunhofer IFAM is also working within the project on coatings for these elastomers to improve their friction reduction and barrier properties. A particular focus is on the development of polyimide coatings in combination with layered silicates that prevent the permeation of harmful gases and moisture. These coatings are used in particular for high-performance electronics and other demanding applications. In addition, the modification of the layered silicates is being investigated to reduce the permeation of water vapor and oxygen through the coating by up to 99%. The application of these coatings shows significantly reduced ageing and prevents dendrite growth as a result of exposure to harmful gases.

The Fraunhofer institutes LBF and IFAM are combining their expertise to develop new solutions and application-ready technologies. Both institutes already have extensive expertise in PFAS substitution thanks to many years of development and project work. The "HATE-Fluor" project is funded by the Fraunhofer-Gesellschaft as part of the PREPARE program and will run for three years.



More News from Fraunhofer Institute for Structural Durability and System Reliability LBF

More News on Research & Development

#Research & Development

Catching heart disease early with AI-based sensor system

It slips on like a normal vest: Fraunhofer IZM has created a smart sensor system in cooperation with the Charité and the Technical University of Berlin. The vest records a vast array of cardiovascular parameters, which an AI-based system uses to support medical diagnostics and spot potentially dangerous developments.

#Research & Development

Panty liners prevent bacterial vaginosis

Worldwide, almost one third of women of childbearing age suffer from bacterial vaginosis. This is when the sensitive microbiome of the vagina becomes unbalanced. Such a disorder of the vaginal flora can cause urogenital infections, abscesses on the ovaries or fallopian tubes or premature births. This significantly increases the risk of infertility in women and of contracting a sexually transmitted disease or HIV.

#Research & Development

Soft interfaces: Textile-integrated light switches, made possible by printable Liquid Metal Ink

A gentle tap on the knitted lampshade is enough to switch on the light. The lamp developed by Fraunhofer IZM in cooperation with WINT Design Lab works with a revolutionary conductive ink. Visitors can find out more and try the lamp themselves at the Berlin Science Week on November 1st and 2nd.

#Research & Development

Aachen Summer School: Strengthening German-Korean cooperation in 4D and robotics

The Aachen Summer School has established itself as an important platform for promoting cooperation between RWTH Aachen University and Seoul National University. The focus is on practice-oriented research projects in the field of 4D and robotics technologies, which have been successfully implemented for years at the Institut für Textiltechnik of RWTH Aachen University.

Latest News

#India ITME 2026

India ITME Society pushes trade & technology alliances in Singapore

India ITME Society hosted India Networking Program - Fabricating the Future of Textile Industry- From Heritage to High-Tech” on 29th October 2025 at Singapore an exclusive gathering of Ministry of Textile Officials, Embassy Officials, Entrepreneurs, Technocrats, Industry Organizations and Media Personnel's designed to foster collaboration, exchange ideas and explore opportunities in the Indian Textile & Textile Engineering Sector.

#Natural Fibers

38th International Cotton Conference Bremen launches registration and unveils key topics

Participants can now register online for the 38th International Cotton Conference Bremen, which will be held on 25-27 March 2026 at the Haus der Bürgerschaft parliament building on market square. All visitors can look forward to a high-calibre conference programme, numerous additional meetings and a valuable exchange of knowledge and information. The comprehensive range of topics covering the entire value chain will provide practical expertise, address current developments, answer key industry questions, and provide new impetus for the future.

#Recycled_Fibers

CARBIOS and Wankai plan 1 million tonnes of PET biorecycling capacity in Asia

CARBIOS and Wankai New Materials, a subsidiary of Zhink Group, are committed to the large-scale deployment of CARBIOS’ PET biorecycling technology in Asia, with the first step being the construction of a PET biorecycling plant in China.

#ITMA Asia + CITME Singapore 2025

Innovation and customer proximity – KARL MAYER’s clear focus makes an impression

ITMA ASIA in Singapore was a resounding success for KARL MAYER, exceeding all expectations. The company welcomed visitors from 39 countries and held around 570 expert discussions. Most guests came from India, followed by China, Indonesia and Pakistan. The exchange with them was both well-founded and targeted. Conversation topics ranged from investment projects and new technologies to opportunities for cooperation and business expansion.

TOP